THE LIFE HISTORY OF A NEOTROPICAL SLIDER TURTLE, PSEUDEMYS SCRIPTA (SCHOEPFF), IN PANAMA

By EDWARD O. MOLL and JOHN M. LEGLER

BULLETIN OF THE LOS ANGELES COUNTY

MUSEUM OF NATURAL HISTORY

SCIENCE: NUMBER 11

MAY 18, 1971

THE LIFE HISTORY OF A NEOTROPICAL SLIDER TURTLE, PSEUDEMYS SCRIPTA (SCHOEPFF), IN PANAMA

By EDWARD O. MOLL and JOHN M. LEGLER

BULLETIN OF THE LOS ANGELES COUNTY

MUSEUM OF NATURAL HISTORY

SCIENCE: NUMBER 11

MAY 18, 1971

PROFESSIONAL PUBLICATIONS OF THE LOS ANGELES COUNTY MUSEUM

The professional publications of the Los Angeles County Museum of Natural History include two series, Contributions and Bulletins. In the past, articles, monographs and catalogs in the fields of history and science have appeared under various headings—Contributions, Science Series, History Leaflet Series and unnumbered catalogs of exhibitions and collections. To simplify and to standardize matters, all professional publications of the History and Science Division of the Museum will now be issued at irregular intervals either as Contributions, or as Bulletins. The former will contain short, technical papers which may be occasionally gathered in volumes, octavo in size. The latter will contain longer, separate monographs and catalogs, usually quarto in size, although this will depend on the needs of the presentation. Papers in each series are to be numbered consecutively.

These papers are original articles and studies based on the collections and work of the Museum, presenting newly acquired information and understanding in the fields of Anthropology, Botany, Geology, History, Mineralogy, Paleontology, Technology and Zoology.

> GILES W. MEAD, Director Los Angeles County Museum of Natural History

VIRGINIA D. MILLER Editor

All communications concerning science manuscripts, exchange of science publications, and the purchase of science publications should be sent to the Managing Editor, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007.

TABLE OF CONTENTS

ABSTRACT	*		7		•	1	*	23	•		33		10	*	*	٠		•			1
INTRODUCTION		v	72				200	120	200					100							2
Acknowledgments .																					2
Systematic relationship	ne o	no	1 4	ietr	ibur	tion	,		*					5.0	100			35	0.5	8	3
Description of taxon	ps c	ше		1511	IOU	Lioi		1			85			: 3	3.0	13	3	1	3.5		4
Description of taxon Economic importance		•	8	1			2	3			18					-	8				6
Study organ					•		1	•	1	,				*		•					6
Study areas								*				55							-	- 4	
Climate						4		4				-						-	-		11
Materials and methods	S					+		-									-			33	12
Terminology	8	(4)	8	-	7	•	•							*	*				-	10	13
Навітат	0		i,	25		23	Ü	¥.		š	3	٠,		K	i.			Ç	Si	્	14
REPRODUCTION	7	Ų.	87	82	37	388	23				:	8.3	10	200			12	12			14
Mating																					14
Reproductive cycle of																					15
Reproductive cycle of	fer	nal	les		53		-	4	100		0.2			90	32	0	:55	100	60	535	18
Nesting			743	2000		200			0.00	200	200								-00		
Eggs																					
2563			2.	3.5		10							*	*	*				-	•	50
HATCHLINGS	90		CX.			40	40	40		(ia	100		20		93	34	3.4	54	-		32
Emergence from egg	6	0.	24	23		**	30							***	4.5	4					32
Emergence from nest		20	000	-						200				.00					-		34
Terrestrial period .	000	824	38	255		- 200	3.5	183	386	55		3000	8 80	31	200	- 20	585	100	- 3	335-0	35
Orientation to water						8		8		13		1.00			8	*		38		3.	36
Orientation to water Arrival at water			8						૽	૽					़		i		1		38
0																					
Growth																					38
Methods																					
Epidermal laminae.	2		4	-		•	্									4		3			38
Growth and ontogeny																					
Changes in form .		×	*	\odot		C	8	(8)							\mathbf{z}	30		32			48
Growth cycles			33	-		•			×				+5	•	*						48
Longevity	*	d.	88	33.	*	43	*	*		::			:	59	*	*			3	22	53
POPULATIONS																					53
Utilization of habitat	*	÷	ं	33	50	*	13	72		3.5	3.5		100	(5)				1			
Estimates of density	•	1	S.			•		15		8				*		1		*	3	13	54
Estimates of density				85		18			ż	1	1	1		1		Ô		2	83		56
Composition Sex ratios			1			1															57
Sex fallos	~			104			1		1	-		4			4				2.7	100	3.1
MOVEMENTS	Ų.	÷	()	-	P	20			7					7			37		97	16	57
General methods .		÷	S.		4				1		3			200	23	32	0				57
Biotelemetry																					58
Home range																					59
Diel activity cycle .	× .			0.4														202	322	150	62
Annual cycle of activ	ity		30					-		-	24	224	100	yo				22	00	194	65
Dispersal	-		200	105	10500	500	50	500	135	- 6	86	100	13	61	0.	20	est cor	(5)	55	105	66
Homing	81		02	537	50	-00		8		-5	1	100	- 55	**	20		13	2.7	22		67
		Ü				*	*				8	*		33	3		3.			-	07

TABLE OF CONTENTS (Continued)

TEMPERATURE RELAT	CIO	NSI	HP:	S.	3.4	Ξ.			33					8	.35							69
Methods																						69
Literature																						70
Body temperatures																						70
Basking																						72
FOOD HABITS	*:			e.v			100				-											79
Diet		200	100	33	7/5	535	100	8.0	99	(8)	200	337.	255	616-3		7.60	600		0.0	-50	233	79
Diet Feeding behavior			٠		į,							85			-		*		*	: :		82
PREDATION AND DEF																						02
																						83
Predation																						83
Defense		٠	•			33	6	C.	4		*		7			10	93			1	4	86
SOCIAL RELATIONSHI	PS		÷		13	÷		,			*		í,	į,		c	×	×			×	86
LIMITING FACTORS	*		20		:::		•	59	*	*	90			77	50	19	*	*			9	87
ADAPTATIONS TO THE	Т	ROI	PICS	s.																		88
Comparisons .										- 2	- 20			7.		Ñ			22	338	330	90
Discussion	8											38						8				90
Conclusions																						93
SUMMARY	20							20	ç			- 1	73		100			41	72		1	94
RESUMEN								*	*	7	8	-	,	*	•	70	У.	*		38	ξŤ	95
LITERATURE CITED				96				100		à c			2.4				400	4.5				98